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A Combination of Hidden Markov Model and
Association Analysis for Stock Market Sector
Rotation

Jiao CHEN!, Chi XIE? Zhijian ZENG?

Abstract

The use of Hidden Markov Model in stock market sector rotation is not
investigated in the past. In this research, we consider an industry sector index
portfolio based on the Shenwan first-class classification and propose state transition
matrix for investment. In particular, we design an correlation analysis strategy
that initialized state probability transition matrix Additionally, we design the
observation state sequence which consisting of a series of stocks. Using Pearson’s
Correlation Coefficient to screen out the 10 stocks with the highest correlation in
each industry sector. We put these parameters into the HMM and use the Baum-
Welch algorithm to obtain the iterative solution results. Using the solved matrix
into the back test program, the results show that the strategy returns well.

Keywords: HMM, association analysis, Pearson correlation coefficient, Baum-
Welch algorithm, apriori.
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Introduction

There are extensive studies in many domains that deal with Hidden Markov Model
(HMM). Early study included the use of HMM for pattern recognition. A speech
recognition algorithm based on HMM is proposed by Zhang and Zhang (2011).
Mohamed and Ramachandran Nair (2012) describe the development of a context
independent, small vocabulary, connectionist-statistical continuous Malayalam
speech recognition system. Liu and Chua (2010) present a new test to distinguish
between meaningful and non-meaningful HMM-modeled activity patterns in
human activity recognition systems. Park and Lee (2011) present a real-time 3D
pointing gesture recognition algorithm for mobile robots, based on a cascade
hidden Markov model (HMM) and a particle filter. Recently, a number of studies
have applied HMM in biological gene engineering (Krogh et al., 2001; Malekpour,
Pezeshk, & Sadeghi, 2016; Nikdelfaz & Jalili, 2018). In addition to research on
model applications, some studies have focused on model improvements. Zhu,
Ye and Gao (2009) used POS algorithm to optimize the initial values of model
parameters and proposed the APHMM model. Xu et al., (2017) improved the
model with the K-means algorithm to make the prediction results more accurate.
Caccia and Remillard (2017) proposed a multivariate autoregressive HMM and
found that the improved model has obvious advantages.

Due to the time series nature of the financial industry, it is required to be able to
model in the time dimension, which leads to the widespread application of HMM.
Srivastava et al. (2008) applied the model to credit fraud detection and results
show that using HMM for information fraud detection is effective. Xu, Chen
and Fu (2015) applied the model to the fuel futures market and conducted VAR
risk measurement on the fuel futures market, portraying the volatility of China’s
fuel futures market. Thomas, Allen and Kingsbury (2002) linked the interest rate
process to the credit risk process through HMM to study the relationship between
them. What’s more, Boyle and Draviam (2007) and Liew and Siu (2010) use the
model to solve the option pricing problem by studying the relationship between
the volatility of the customer’s potential assets and the interest rate.

With the global economic crisis in 2008, especially since 2009, the US stock market
has entered a bull market for nearly 10 years, and more and more institutions or
individual investors use models to analyze the stock market. Researchers use the
open, close, high, and low price of the daily stock to predict the stock price rise
and fall the next day (Hassan & Nath, 2005; Park et al., 2009; Gupta & Dhingra,
2012, Huang, 2015), applied HMM to stock price forecasting and gave a new way
to predict stock prices. In the mainland stock market, some scholars use models to
conduct research. In addition to using HMM alone, Hassan (2009) tried combine
it with fuzzy models for better results.
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HMM general form

The HMM is usually composed of the following five-tuple (S, O, I1, 4, B) form:

1. §={s,,...,s,} representing a state set, the elements in the state set have
subscripts t representing moments.

2. 0O={0,,...,0,,} is the output observation state set. In the case of discrete
observation densities, M is the number of observation state.

3. Initial state distribution IT={x, },1€E S, where the m, represents the probability
value of the state 1 :
;= Plsy = 1) (21)

State transition distribution matrix 4 = {ﬂi:'}' LjeS A= {ﬂi:'}' LjEeS

@i = PGepqls. ) 156 j < N (2.2)

Observation state probability distribution matrix B = b;(0.) B = b;(0:) where
the probability function for each of these states J is:

b_;'{ﬂr] = Plo:ls: = )(2.3)

After modeling the problem as HMM, assuming the model generates a set of
data, we can calculate the probability of the observed sequence and the possible
initial state sequence. We can also train model parameters based on observed data
and obtain more accurate models, then use the trained models to predict the data.

Model building process and data acquisition

We choose 18 industries in the first-level industry except building decoration,
electrical equipment, household electrical and mechanical equipment, and obtain
index data from 2011 to September 2018, and we also obtain top 10 stock trading
data of each industry within the corresponding time period.

Once we have an HMM, there are three problems of interest
1) The Evaluation Problem

Given an HMM and a sequence of observations 0 ={oy.0z,....07) , what is
the probability that the observations are generated by the model, £ 0149
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2) Then Decoding Problem

Givenamodel 4 and a sequence of observations @ = (0y. 0z, ... 07) what is
the most likely state sequence in the model that produced the observations?
3) The Learning Problem

Given a model 4 and a sequence of observations @ = (01, 0z, ....07)  how
should we adjust the model parameters {4.B.T} in order to maximize
P(O1A)

According discussed in the previous section, the modeling of this section
belongs to the Learning Problem, that is, learning model parameters in the case of
the observation state sequence determination. The main parameter we focused is
the hidden state probability transfer matrix and use this probability transfer matrix
to guide the direction of industry investment. Therefore, the appropriate set of
observation states and the definition of the implicit state set are very important.

Statistical description and correlation analysis

The definition of hidden state

The industries we selected are 18 industries in the first-level industry
except Building Decoration, Electrical Equipment, Textile and Garment,
Household Electrical and Mechanical Equipment, namely Agriculture Animal
Husbandry and Fishery(AAHF), Mining, Chemical Industry(CI), Non-Ferrous
Metal(NFM), Food and Beverage(FB), Light Industry(LI), Medical Biology(MB),
Transportation(Trans), Commercial Trade(CT), Leisure Services(LS),
Comprehensive Industry(CPI), National Defense and Military Industry(NDMI),
Computer, Media, Communication (Comm), Banking, Non-bank Finance(NF),
Automobile (Auto). From the data in Figure 1, the industry’s ups and downs
synchronism are obvious, but the trend of trade-offs between industries is also
obvious.

Figure 1. Industry index has risen and fallen in recent years
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We define the hidden state set as

g — {AA HF,Mining,CI, NFM,FE,LI, MB,Trans,CT,L5,CPI,

NDMI, Computer Media, Comm, Banking, NF, Auto } (+.1)

The hidden state set contains 18 industry sectors such as Defense Military
and Computer. We define the set of observation states to be the 10 most relevant
stocks under the corresponding section. Pearson Correlation Coefficient (Pearson
Correlation Coeflicient) is used to compute the daily closing data of stocks on the
20 days, 60 days, 90 days, 180 days, 270 days, 365 days, 2 years, and 3 years with
the corresponding interval index data of the selected industry, to get the industry
sector with the highest average Pearson correlation expectation. The final sector
and stock correlation distribution is shown in the 7able 1.

Table 1. Stock and industry index Pearson correlation coefficient

01|02 |03)| 04 )|05| 06 |07]|08]| 09 1.0

AAHF 0 0 2 0 2 5 22 48 76 1
Mining 1 0 0 0 1 0 5 26 | 105 9
cl 0 0 0 0 0 0 1 7 43 3
NFM 0 0 0 0 0 5 5 41 89 1
FB 0 0 0 0 0 0 0 5 62 9
LI 0 0 0 0 0 2 11 36 48 1
MB 0 0 0 0 0 0 4 15 25 0
Trans 0 0 0 0 0 2 12 20 30 1
CT 0 0 0 0 0 0 1 19 | 106 | 17
LS 0 0 0 0 0 0 2 16 25 1
CPI 0 0 0 0 0 0 2 9 27 0
NDMI 0 0 2 0 0 2 6 11 16 7
Computer 0 0 0 0 1 0 3 21 28 3
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Media 0 0 0 0 0 0 3 11 52 10
Comm 0 0 2 0 0 1 1 15 52 4
Banking 0 0 0 0 0 3 10 18 93 0
NF 0 0 0 0 0 1 3 6 5 1
Auto 0 4 3 6 10 24 56 76 66 1

From the distribution map, we find that the correlation coefficient between the
listed company’s stock and the corresponding industry sector index is generally
high. It also shows that the stocks of Chinese listed companies are greatly affected
by the industry’s rotation effect. In addition, it is worth noting that among the ten
stocks with the highest correlation coefficient among the industry sectors, not all
of them are the stock classifications specified in the ShenWan first-level industry
classification, as shown in the Table 2.

Table 2. Industry sector correlation top ten stocks main business areas
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It is easy to see that only the top ten stocks in the Financial industry
(including Non-bank Financial industry) are consistent with the ShenWan first-
class classification. In addition, the Defense Military industry, Trans, Computer,
Real Estate industry and ShenWan’s first-level industry classifications are more
consistent, and other industries have different levels of mixed stocks. The reason
for this phenomenon, we believe that on the one hand there are stocks that have
excess returns relative to the industry sector, and there are also “market-making”
behaviors of more institutional users in the secondary market. On the other hand, for
a listed stock, its main business will adjust its capital supply direction according to
different time, different market background and profitability. Relatively speaking,
because of its industry specificity, the financial industry has very low possibilities
for adjusting its main business direction. Secondly, with the “cross-border effect”
of the Internet industry in recent years, various industries have cases of Internet
transformation. This explains why the financial industry’s strong correlation stocks
are consistent with ShenWan’s first-class classification, and there are more or less
one or two computer-based listed company stocks in various industries.

In summary, we take the performance of the stock prices of the top 10 listed
companies extracted by various industry sectors as the observation state set, and
the observation sequence will use the performance of the weekly corresponding
stocks as the elements of this observation sequence.

0 = {0,, 04, . 015} (4.2)
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The prior distribution of hidden state

Our goal is to estimate the probability transfer matrix between hidden states
by using the performance of stock sets corresponding to the industry sector, that
is, the probability distribution of rotation between industry sectors.

For such problems that cannot guarantee the properties of convex functions,
in the process of using an algorithm like EM and gradient descent, the problem
of local optimal solutions is inevitable. In view of the special problems of the
industry sector rotation this paper, we propose that the initial distribution of the
parameters of the algorithm startup timing can be supplemented according to
some existing prior knowledge. In short, it is possible to analyze the possible
rotation relationship between industry sectors, artificially adjust the search starting
point of the parameter space. Therefore, we put aside the performance of stocks
corresponding to the industry sector and use the correlation analysis technology to
find the possible rotation probability distribution between industries in the process
of the rise and fall of the industry sector index.

The association rules analyze the database through a specific rule algorithm,
and mine the hidden and valuable associations between different data item sets
in the database, so as to give the associated feature description of the data set. Its
purpose is to help decision makers analyze historical data and the characteristics
and laws of current data in order to build predictive models.

We define the relationship of association analysis rules

R:X—-Y(4.3)

Where XC LY el gpgXMNY =9 , representing the itemset X appearing in a
trading period Ti Ti, it is possible that the itemset Y also appears with probability
P. The association analysis rules we care about are measured using the following
two metrics: Degree of Support and Degree of Confidence.

For itemset X, we set count(X = T) to the total number of transaction periods
containing X in transaction set D, and the support of itemset X

count{X C T)

support(X) = D]

(4.4)

The support degree of the association analysis rule R represents the ratio of
the transaction number of the itemset X and the itemset Y to the 21D in the
transaction set, that is

count{XUY) -

support{X = Y) = D] (4.5)
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The degree of support reflects the probability that itemset X and itemset Y
appear simultaneously.

The confidence of the association analysis rule R is the ratio of the number
of transactions including itemset X and itemset Y to the number of transactions
containing itemset X, i.e.

support(X — Y)
support(X)

confidence(X = Y) = 4.6)

Confidence reflects the probability that the itemset Y is included in the same
period in the transaction cycle. In general, the higher the support and confidence,
the stronger the correlation.

Combining the concept of transition probability matrices in the HMM above,
we define the rotation probability transfer matrix between industry sectors as

Gpp " fom

Bpne = F *.7)

Qpo " Oan

a;; = €% confidence(i — j)+ (1 - €} x support{i — j) e € [0,1] (4.8)

f=S5oftmax (4.9)

Where n is equal to the total number of industry sectors, and @i represents
the association rule score calculated by the i-th industry sector to the j-th industry
sector through support degree and confidence degree, and the Softmax function
will guarantee that the column vector of matrix A is equal in weight, and the sum
is 1. The specific score is the summation weighted by the confidence degree and
the support degree, because the support degree reflects the linkage property of the
related item set in more cases, and the confidence degree more reflects the rotation
property of the related item set, setting the parameter € =0.8, which increases the
weight of the confidence score.

The industry sector rotation model discussed belongs to the third type of
HMM which is the known observation state sequence, which estimates the model
parameters. The process includes constructing the hidden state and observation
state and designing the state sequence. From the perspective of machine learning,
the estimation process of model parameters is the training process of the model.
Then we need to define the parameters that participate in the model training.

The set of observation state sequences is mentioned as
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0 = {0,, 03, .... 0, } (4.10)

Where O: represents the i-th observation state, we define the observation state
as the sum of the cycle price performance of the top 10 stocks with the highest
average correlation coefficient among various industry sectors. The average
correlation coefficient is composed of the average of the Pearson Correlation
Coefficients of the 20days, 60days, quarter, half year, three quarters, full year and
two years corresponding to the daily closing price of the stock and industry sectors.

Period = {20,60,90,180,270,365,730} (4.11)

n
1
Coef(i.j)= EZ Pearson(i, j,p).p € Period(4.12)
2]

0; = Top{XIX € Coef(, )} 10}4.13)

Pearson(i.j.p) represents the Pearson Correlation Coefficient of the i-th

industry index and stock j in p day, and Co€f Uy) represents the average coefficient
value after summing up the all cycles.

Estimating state transition probability
matrix based on observation sequence

01,02, ...0n ‘ Al | Select the next cycle investment direction
according to the transition probability matrix

|01,02, ...0n | A2 |
|01,02, ... 0n | A3 |
\01 02, ...0n |A4‘
|01,02,..0n | Ak |
T T 3 T4 5 n

Figure 2. Sliding window iteration parameter flow
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After obtaining the definition of the observation state sequence set, we will use
the sliding time window form shown in Figure 2, periodically iteratively obtain
the parameters of the model, and use the obtained state probability transfer matrix
to guide our industry investment decision, and finally verify the validity of the
model in the back test.

Market data experiments and results

The data comes from the China A-share daytime data from Wind Database from
2011 to 2018. We have extracted 1,696 stocks of listed companies that have traded
since 2011, of which 860 are from the Shanghai Stock Exchange and 836 from the
Shenzhen Stock Exchange (including 800 small and medium-sized board stocks
and 36 GEM stocks). Industry sector index data includes AAHF, Mining, CI, NFM,
FB, LI, MB, Trans, CT, LS, CPI, NDMI, Computer, Media, Comm, Banking, NF,
Auto, totally 18 industries, from 2011 until now, close price daily data.

The observation state definition is the sum of the cycle price performance of
the top 10 stocks with the highest average correlation coefficient among various
industry sectors. The Table 3 shows the average of the top 10 stocks of various
industry sectors and their Pearson Correlation Coefficients.

Except for the banking industry sector, the correlation coefficient of
representative stocks of observational states selected by other industries exceeds
0.9, which shows that they are basically representative of the industry. In addition,
we use &1 05 -015 015 to replace the observation state from top to bottom. We
aggregate the daytime data of the stock into 5-day cycle data by accumulating
the daily closing price, and obtain the best-performing observation state sequence
every week according to the cycle data.

In order to calculate the a priori hidden state probability transfer matrix, we
need to first generate the support degree and confidence degree between all industry
sectors through the frequent itemset mining algorithm, namely Apriori.
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Table 3. Industry sector correlation top 10 stocks and correlation coefficient mean
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We use the ups and downs of the daily index of the industry sector as a sign
of whether the itemset, and also aggregated into a 5-day cycle up and down
according to the cumulative form of the 5 days. The industry rotation probability
matrix calculated is shown in Figure 3. This probability transfer matrix will be put
into the Baum-Welch algorithm as a priori probability transfer matrix parameter.

The parameter estimation of the hidden state transition probability matrix is
estimated using the Baum-Welch algorithm, and the derivation process of the
algorithm is not described here. Briefly describe the pseudo code as Figure 4.

As shown in the sliding window iterative parameter estimation graph in Figure
2, we accumulate the 1881 trading days since 2011 and aggregate them into 5
trading days, totally 564 trading cycles, and finally divide them into 12 algorithm
iteration cycles, and 47 observation states of the cycle are iterated. The estimation
of the industry rotation probability transfer matrix is performed every iteration
cycle, and the estimated value is used to adjust the sector position. Each adjustment
is based on the industry with the highest probability of the next rotation in the

maxP i
previous state St+1 (Sees |s,}. The back test effect is shown in Figure 5.
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Figure 3. Industry rotation probability matrix
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Input: Observation State Sequence D = {04, 0,....0p)
Output: HMM 855 By ()

1). Imitalize all Mo @0 By (k)

2). loop Observation State Sequence D

3) Forward-Backward algonthm update ¥ ﬁlf G.0
4). Update W@y B(K)

___ﬁ'—'ﬂ"fﬂ @)
D
L ESRAD
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ﬂ:=l. ]jr-ﬂk rfﬁ]
E=1 ¥:(E)

5).If @i ByE) conversence, Termmate, else soto step 2)

b; (k)=

Figure 4. Baum-Welch algorithm pseudo-code process

Scale: IM 1Y Al W Strategy Yield M Benchmark Yield Time: | 2013-12-30 | - 2018-09-28

Figure 5. Back test results
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Table 4. Back test statistics

Statistical indicators Value
Annualized rate of 11.96%
return
Alpha 0.05
Beta 0.394
Shape rate 0.267

Maximum withdrawal 53.759%

From the back test results in Table 4 , the rotation combination is better to
capture the bull market in the middle of 2015 years, but it does not avoid the bear
market afterwards. In the relatively stable market environment afterwards, the
rotation combination yield is better.

Conclusion

We use the correlation analysis to calculate the prior probability distribution
of the HMM state transition matrix, and propose the use of HMM to analyze the
industry sector rotation. We define the industry sector as a hidden state node and
a strong correlation stock as an observation state node and designed a moving
time window algorithm to iteratively generate a state probability transfer matrix.
The industries we selected are 18 industries in the first-level industry and use the
data from the 2011 to 2018 Chinese stock market to test. In summary, from the
beginning of 2011, about 12% of annualized income is slightly insufficient, and
it is inevitably affected by the 2018 Sino-US trade war.
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